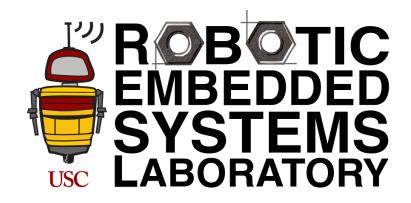
Exploring CNN-based Feature Transfer for Robot Affordances

Abhineet Jain, Oliver Kroemer, Gaurav S. Sukhatme

School of Engineering



Motivation

- Robots need to learn affordances of objects for manipulation
- Suitable features are needed for predicting affordances
- Deep neural networks can learn features, but they require a lot of input data
- Data is limited for new affordances

What do we explore?

- We use Transfer Learning to explore:
 - Learning features from previous affordances with many samples
 - Using learned features to predict new affordances with fewer samples

Workflow

Create affordance patch dataset

Preprocessing images

Train CNN

Create dataset from robot

Transfer learned CNN features

- Initial dataset:
 - Affordance Detection of Tool Parts from Geometric Features

Austin Myers, Ching L. Teo, Cornelia Fermuller, Yiannis Aloimonos. ICRA 2015.

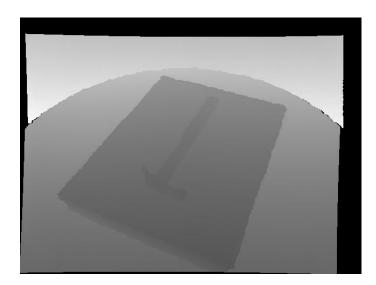
- Comprised of objects affording 7 affordances (grasp, cut, contain, support, pound, scoop, wrap-grasp)
- Each object has multiple RGB images, corresponding depth images, and affordance labels for every pixel in those images.

• Details of the original dataset

Object	Samples
Cut	25
Knife	12
Saw	3
Scissors	8
Shears	2
Scoop	17
Scoop	2
Spoon	10
Trowel	5

Object	Samples
Contain	43
Bowl	10
Cup	6
Ladle	5
Mug	20
Pot	2
Support	10
Shovel	2
Turner	8

Object	Samples
Pound	10
Hammer	4
Mallet	4
Tenderizer	2
Total	105



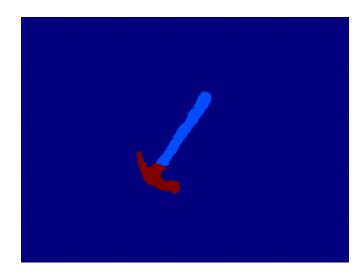
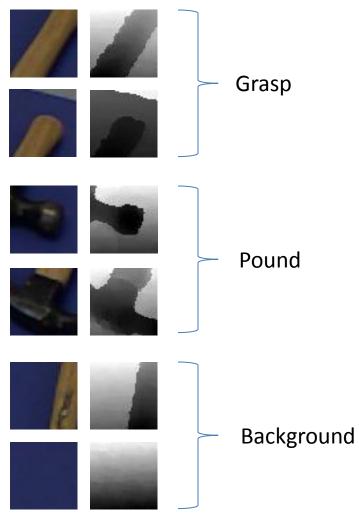


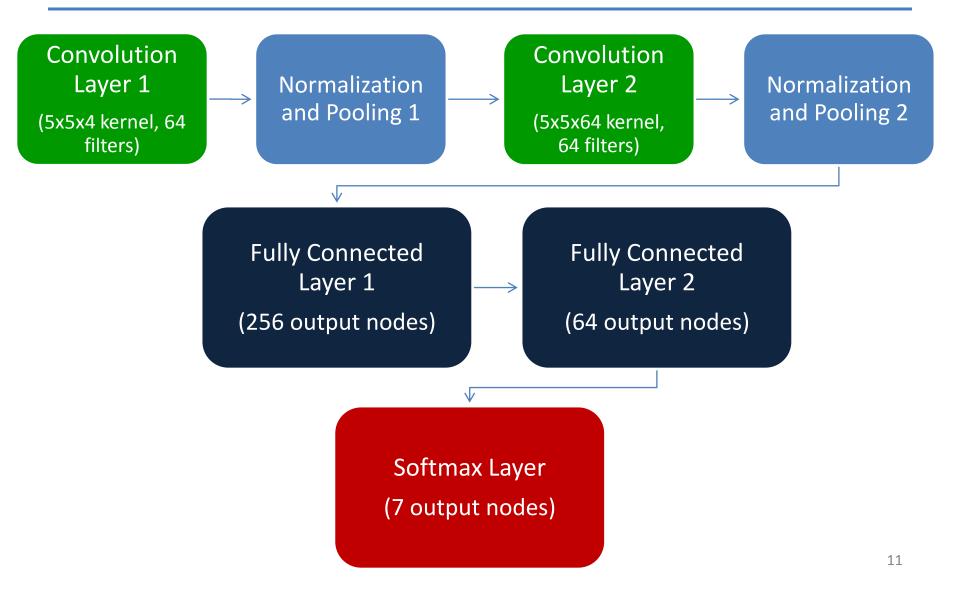
Image in the original dataset

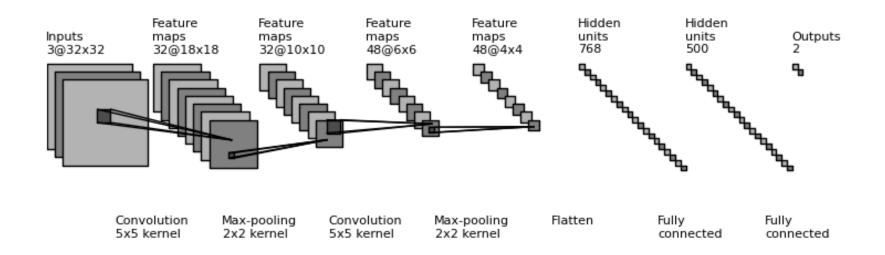


- For every affordance (7 categories + no affordance), 6250 patches. Total: 50,000
- 40,000 patches for training, and 10,000 for testing.
- We combined grasp and wrap-grasp categories
- Final labels: background, grasp, cut, scoop, contain, pound, support

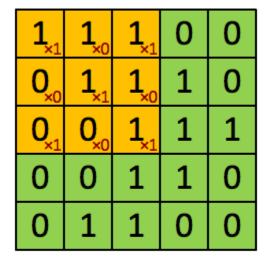
Preprocessing

- Whiten RGB image
- Whiten depth image
- Removes variations in intensity and lighting.
- The dataset becomes more generalized.
- Formally, the features are less correlated with each other
- All features have the same variance





Sample CNN



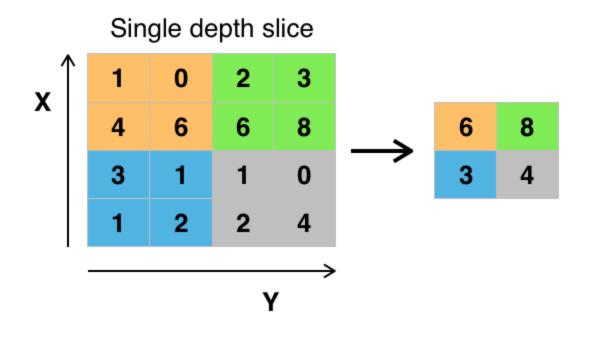
Image

Convolved

Feature

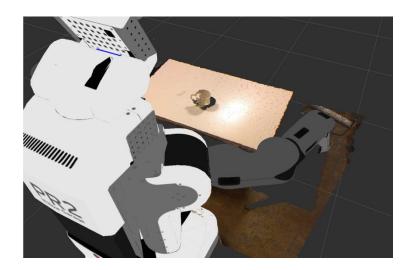
4

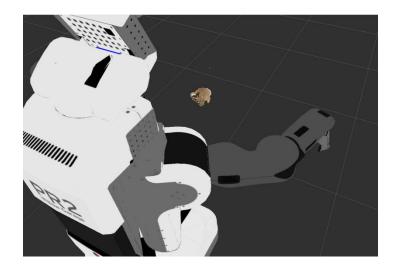
2D Convolution



Max Pooling

- Read Point Cloud data from Kinect
- Segment the table surface so that only object is visible

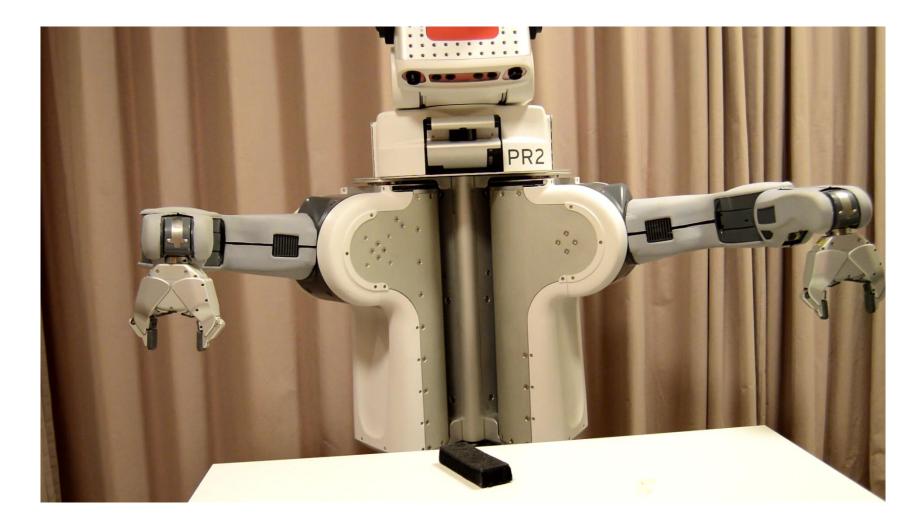




- Read RGB and depth images from Kinect
- Select a random pixel, until a valid point on the Point Cloud is obtained

Image from Kinect

- Set the orientation of the grasp at that point, in the direction of the normal at the point.
- Use the point and orientation to execute the grasp in 6 steps: orient, pre-grasp, grasp, lift, place, retract

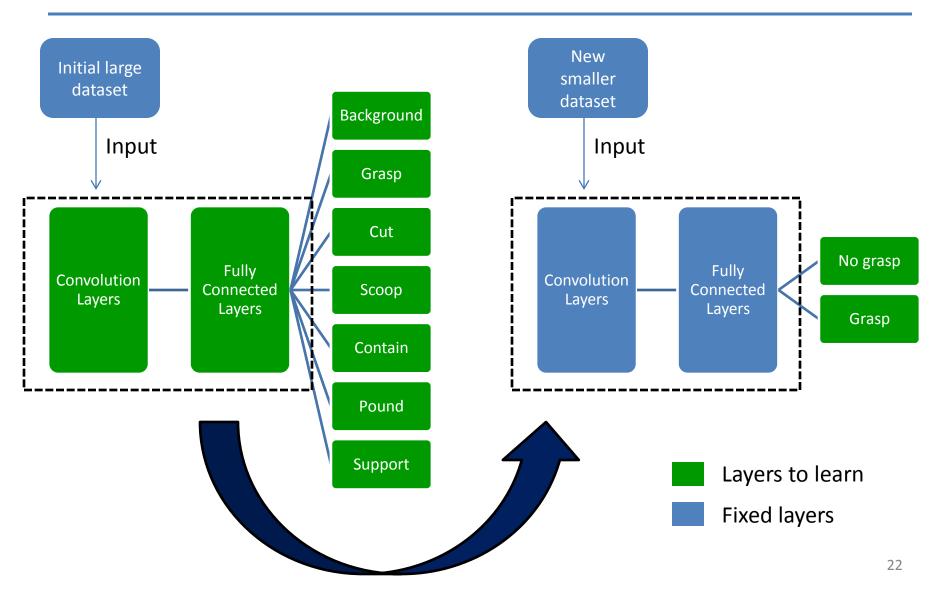


- Manually label each attempt as successful or otherwise
- Each attempt yielded a single patch
- Total number of patches: 250
- Training set: 200
- Test set: 50

Transfer Learned CNN Features

- Use the trained CNN as a feature extractor
- Extract the values after the second last layer, Fully Connected Layer 2, outputs 64 features
- Now, each image is represented as a 64 feature vector
- Train a Softmax layer over these features to learn the robotic affordance – grasp.

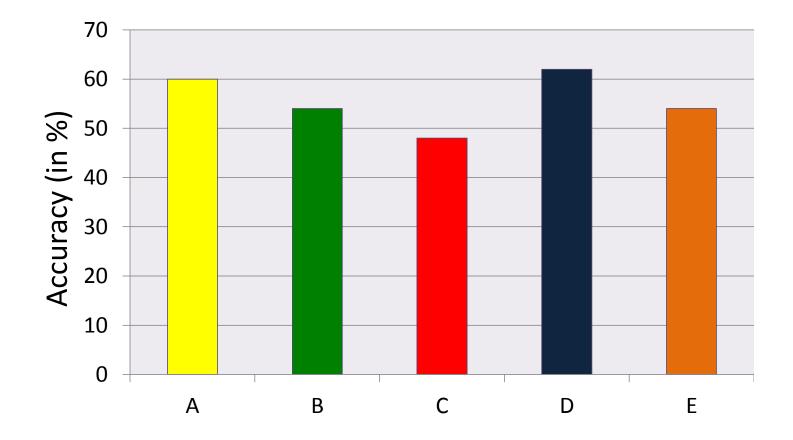
Transfer Learned CNN Features



Experiments

- A. Train CNN on all 6 affordances, Retrain output layer on target affordance
- B. Train CNN on 5 non-grasping source affordances, Retrain output layer on target affordance
- C. Train CNN on grasping source affordance, Retrain output layer on target affordance
- D. Train CNN on grasping source affordance, NO retraining on target affordance
- E. NO training on source affordances, Train CNN on target affordance directly

Experiments



Things to do for ICRA

- Modify network to learn better features
- Add push affordance to the target dataset
- Add data for different scales
- Evaluate
 - Changing the number of source affordances
 - Changing the size of the patch
 - Exploring the features learned with different input affordances